Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071510

ABSTRACT

A balanced and varied diet provides diverse beneficial effects on health, such as adequate micronutrient availability and a gut microbiome in homeostasis. Besides their participation in biochemical processes as cofactors and coenzymes, vitamins and minerals have an immunoregulatory function; meanwhile, gut microbiota and its metabolites coordinate directly and indirectly the cell response through the interaction with the host receptors. Malnourishment is a crucial risk factor for several pathologies, and its involvement during the Coronavirus Disease 2019 pandemic has been reported. This pandemic has caused a significant decline in the worldwide population, especially those with chronic diseases, reduced physical activity, and elder age. Diet and gut microbiota composition are probable causes for this susceptibility, and its supplementation can play a role in reestablishing microbial homeostasis and improving immunity response against Coronavirus Disease 2019 infection and recovery. This study reviews the role of micronutrients and microbiomes in the risk of infection, the severity of disease, and the Coronavirus Disease 2019 sequelae.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Aged , Micronutrients/pharmacology , Vitamins/pharmacology , Coenzymes
2.
J Trace Elem Med Biol ; 73: 127044, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936888

ABSTRACT

COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Selenium , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents , Dietary Supplements , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Minerals/therapeutic use , Selenium/therapeutic use , Vitamin A , Vitamins/pharmacology , Vitamins/therapeutic use
3.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: covidwho-1760647

ABSTRACT

Parkinson's disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.


Subject(s)
Parkinson Disease , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice , Micronutrients/metabolism , Micronutrients/pharmacology , Micronutrients/therapeutic use , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use
4.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742487

ABSTRACT

The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care-but also medical prophylactic and therapeutic care in general-to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Micronutrients/metabolism , Vitamin A/metabolism , Vitamin D/metabolism , Zinc/metabolism , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Humans , Micronutrients/pharmacology , Pandemics/prevention & control , SARS-CoV-2/physiology , Tight Junctions/drug effects , Tight Junctions/metabolism , Vitamin A/pharmacology , Vitamin D/pharmacology , Vitamins/metabolism , Vitamins/pharmacology , Zinc/pharmacology
5.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1495800

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19 Drug Treatment , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
6.
Clin Nutr ESPEN ; 43: 39-48, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157201

ABSTRACT

BACKGROUND: The enormous health impact of the COVID-19 pandemic has refocused attention on measures to optimize immune function and vaccine response. Dietary deficiencies of micronutrients can weaken adaptive immunity. The aim of this review was to examine links between micronutrients, immune function and COVID-19 infection, with a focus on nutritional risks in subgroups of the Swiss population. METHODS: Scoping review on the associations between selected micronutrients (vitamins D and C, iron, selenium, zinc, and n-3 PUFAs) and immunity, with particular reference to the Swiss population. These nutrients were chosen because previous EFSA reviews have concluded they play a key role in immunity. RESULTS: The review discusses the available knowledge on links between sufficient nutrient status, optimal immune function, and prevention of respiratory tract infections. Because of the rapid spread of the COVID-19 pandemic, controlled intervention studies of micronutrients in the context of COVID-19 infection are now underway, but evidence is not yet available to draw conclusions. The anti-inflammatory properties of n-3 PUFAs are well established. In Switzerland, several subgroups of the population are at clear risk of nutrient deficiencies; e.g., older adults, multiple comorbidities, obesity, pregnancy, and institutionalized. Low intakes of n-3 PUFA are present in a large proportion of the population. CONCLUSION: There are clear and strong relationships between micronutrient and n-3 PUFA status and immune function, and subgroups of the Swiss population are at risk for deficient intakes. Therefore, during the COVID-19 pandemic, as a complement to a healthy and balanced diet, it may be prudent to consider supplementation with a combination of moderate doses of Vitamins C and D, as well as of Se, Zn and n-3 PUFA, in risk groups.


Subject(s)
COVID-19 Drug Treatment , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Immunologic Factors/therapeutic use , Trace Elements/therapeutic use , Vitamins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , COVID-19/immunology , Comorbidity , Fatty Acids, Omega-3/pharmacology , Female , Humans , Immunologic Factors/pharmacology , Male , Micronutrients/pharmacology , Micronutrients/therapeutic use , Nutritional Status , Pandemics , Pregnancy , SARS-CoV-2 , Selenium/pharmacology , Selenium/therapeutic use , Switzerland , Trace Elements/pharmacology , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Zinc/pharmacology , Zinc/therapeutic use
7.
Br J Nutr ; 125(6): 618-627, 2021 03 28.
Article in English | MEDLINE | ID: covidwho-1139692

ABSTRACT

Se is a micronutrient essential for human health. Sub-optimal Se status is common, occurring in a significant proportion of the population across the world including parts of Europe and China. Human and animal studies have shown that Se status is a key determinant of the host response to viral infections. In this review, we address the question whether Se intake is a factor in determining the severity of response to coronavirus disease 2019 (COVID-19). Emphasis is placed on epidemiological and animal studies which suggest that Se affects host response to RNA viruses and on the molecular mechanisms by which Se and selenoproteins modulate the inter-linked redox homeostasis, stress response and inflammatory response. Together these studies indicate that Se status is an important factor in determining the host response to viral infections. Therefore, we conclude that Se status is likely to influence human response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and that Se status is one (of several) risk factors which may impact on the outcome of SARS-CoV-2 infection, particularly in populations where Se intake is sub-optimal or low. We suggest the use of appropriate markers to assess the Se status of COVID-19 patients and possible supplementation may be beneficial in limiting the severity of symptoms, especially in countries where Se status is regarded as sub-optimal.


Subject(s)
COVID-19/physiopathology , RNA, Viral/drug effects , SARS-CoV-2/drug effects , Selenium/pharmacology , Virus Diseases/physiopathology , Animals , COVID-19/virology , Humans , Inflammation/virology , Micronutrients/pharmacology , Nutritional Status , Oxidation-Reduction/drug effects , Stress, Physiological/drug effects , Virus Diseases/virology
8.
Nutrition ; 84: 111103, 2021 04.
Article in English | MEDLINE | ID: covidwho-957333

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic is seriously threatening public health and setting off huge economic crises across the world. In the absence of specific drugs for COVID-19, there is an urgent need to look for alternative approaches. Therefore, the aim of this paper was to review the roles of micronutrients and bioactive substances as potential alternative approaches in combating COVID-19. METHODS: This review was based on the literature identified using electronic searches in different databases. RESULTS: Vitamins (A, B, C, D, and E), minerals (selenium and zinc), and bioactive substances from curcumin, echinacea, propolis, garlic, soybean, green tea, and other polyphenols were identified as having potential roles in interfering with spike glycoproteins, angiotensin converting enzyme 2, and transmembrane protease serine 2 at the entry site, and inhibiting activities of papain-like protease, 3 chymotrypsin-like protease, and RNA-dependent RNA polymerase in the replication cycle of severe acute respiratory syndrome coronavirus 2. Having immunomodulating, antiinflammatory, antioxidant, and antiviral properties, such micronutrients and bioactive substances are consequently promising alterative nutritional approaches to combat COVID-19. CONCLUSIONS: The roles of micronutrients and bioactive substances in the fight against COVID-19 are exciting areas of research. This review may suggest directions for further study.


Subject(s)
COVID-19 Drug Treatment , Micronutrients/pharmacology , Phytochemicals/pharmacology , SARS-CoV-2 , COVID-19/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL